APBI 402 / SOIL 502
SUSTAINABLE SOIL MANAGEMENT
TERM 2 - 2015/16

Lead Instructors*: Maja Krzic, MCML 227
Sandra Brown, MCML 156
Maja.Krzic@ubc.ca
Sandra.Brown@ubc.ca

Case Instructors*: Cindy Prescott, FSC 3037
Sue Grayston, FSC 3006
Shannon Berch, BC Min. Environment, Victoria
Mike van Ham, SYLVIS, New Westminster
Art Bomke, MCML 233
Cindy.Prescott@ubc.ca
Sue.Grayston@ubc.ca
Shannon.Berch@gov.bc.ca
mvanham@sylvis.com
art.bomke@ubc.ca

Lectures: Friday @ 1 – 2 pm (MCML 160)
Tutorial: Monday @ 3- 5 pm (MCML 154)

* Maja and Sandra are the appropriate contact persons regarding the general conduct of the course and some of the cases. Drs. Prescott, Grayston, Berch, Bomke and Mr. Van Ham prepared one case each and will be contributing their expertise during that specific unit of the course.

Course Description:
Application of fundamental, unifying, soil science principles in sustainable management of forested, agricultural and urban or constructed ecosystems.

Course Learning Outcomes:
Upon completion of APBI 402 / SOIL 502 students will be able to:
• Describe processes of soil genesis, recognize diagnostic features of natural soils, and relate management practices to information available in soil survey reports.
• Utilize physical, chemical and biological soil quality indicators to assess sustainability of land management practices.
• Characterize the soil chemical environment and its modification to enhance plant, animal and human health. (Specific topics may include: liming, fertilization, and remediation of chemical contamination)
• Describe soil biological processes with regard to nutrient cycling and management of organic inputs. (Specific topics may include: maintenance of soil organic matter, carbon sequestration, and recycling of various organic materials such as manures, biosolids, and green manures)
• Describe soil physical environment and its manipulation and/or degradation in ecosystem management. (Specific topics may include compaction, trafficability, water management, soil erosion)
Discuss the relationship of soil management to government and private sector policies. (Specific topics may include Forest practices code, urban development regulation, right to farm and farmland preservation legislation and environmental farm planning) land reclamation legislation.

Course Format:
APBI 402 is run in conjunction with SOIL 502, with students enrolled in both courses participating in a modified problem-based learning (PBL) environment to meet the course learning outcomes listed above.

The course learning outcomes will be met through 3 case studies, each 4 weeks in duration. Groups of 4-6 students will be assigned either a forestry, urban, or an agricultural land management regime in which to pursue the case study learning outcomes. Each case will conclude with seminars from each group to enable a comparison of approaches within different land uses. Individual students will prepare 1,000 word reports, summarizing their own personal learning for each case. Groups will be organized to facilitate interdisciplinary discussion and to provide opportunities for students from different programs to benefit from their varied experience and educational backgrounds. Class meetings each week will consist of a 1-hour lecture and 2-hour discussion/PBL group activity.

There is no textbook for the course; background readings will be drawn from a variety of sources. Student assessment will be on the basis of final examination, group presentations, individual student case reports, and a small component to recognize class participation.

Course Marks:

<table>
<thead>
<tr>
<th></th>
<th>APBI 402-Sustainable Soil Management</th>
<th>SOIL 502-Advanced Sustainable Soil Management</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam</td>
<td>35%</td>
<td>Final exam</td>
</tr>
<tr>
<td>Case reports by individuals (3)(^a)</td>
<td>30%</td>
<td>Case reports by individuals (3)(^a)</td>
</tr>
<tr>
<td>Case seminars by groups (3)(^b)</td>
<td>30%</td>
<td>Case seminars by groups (3)(^b)</td>
</tr>
<tr>
<td>Class participation(^d)</td>
<td>5%</td>
<td>Class participation(^d)</td>
</tr>
</tbody>
</table>

\(^a\)Written case reports\ of 1,000 words will be prepared by individual students and will be due a week after the group presentations. Written case reports will be assessed on the basis of content and quality of writing. Content of the individual case reports should demonstrate that the student has achieved the case learning outcomes and is able to discuss them in the context of the case scenario. Also, in 1-2 paragraphs each student should compare (relate) learning outcomes of his/her case to the cases presented by other groups. Some writing tips are given at the end of the course syllabus. All reports should be handed in on time and 10% mark subtraction will be made for each day being late.

\(^b\)Group presentations will be judged based on content, structure, and delivery. More detailed criteria for group presentations are given at the end of the course syllabus.

\(^c\)Term paper for SOIL 502 students of approximately 1,500 words on a soil management topic to be negotiated and approved by the course instructors.

\(^d\)Class participation will be assessed on the basis of contribution to in-class (verbal) and online (written) discussions.
It is highly recommended that students attend SOIL 500 – Soil Science seminar (every Friday at 3-4 pm) since most seminar topics will be complementary to what we are covering in this course.

COURSE OUTLINE

Course Introduction (Week 1) General concept of soil quality and sustainable land management

Case 1: (Weeks 1 through 5)
Case specific learning outcome: Describe soil physical environment and its manipulation and/or degradation in ecosystem management.
Case scenarios:
• Forestry: Impacts of mechanical disturbance on soil quality on forest landings
• Agriculture: Cattle grazing impacts on soil quality on grasslands
• Regional development: Soil erosion in the middle mountains in Nepal

Case 2: (Weeks 5 through 9)
Case specific learning outcome: Characterize the soil chemical environment and its modification to enhance plant, animal and human health.
Case scenarios:
• Forestry: Salal Cedar Hemlock Integrated Research Program (SCHIRP)
• Agriculture: Soil testing as a tool for monitoring soil quality; the UBC Farm Case
• Managed: Fabricated soil mixtures used as cover for Vancouver Landfill
• Urban: Re-grounding in Riley Park, Vancouver, BC

Case 3: (Weeks 9 through 13)
Case specific learning outcome: Describe soil biological processes and application to nutrient cycling and management of organic inputs.
Case Scenarios:
• Forestry: Soil fauna on the long-term soil productivity (LTSP) sites in BC
• Forestry: Effects of variable retention harvesting on soil microbial communities in Coastal BC Forests
• Agriculture: Soil mesofauna on grazed rangelands in BC
General references:

Schedule for tutorials and lectures

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Tutorial (Mon 3-5 pm)</th>
<th>Date</th>
<th>Lecture (Fri 1-2 pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MCML 154</td>
<td></td>
<td>MCML 160</td>
</tr>
<tr>
<td>1</td>
<td>Monday</td>
<td>Course introduction & Soil Sci. review (Maja)</td>
<td>Friday Jan 8</td>
<td>Lecture Maja: Introduction to soil quality approach: history, principles, criticism</td>
</tr>
<tr>
<td></td>
<td>Jan 4</td>
<td></td>
<td></td>
<td>Case 1 (Soil physics)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Impacts of mechanical soil disturbance on soil quality on forest landings in BC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Soil erosion in the middle mountains in Nepal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Cattle grazing and its impacts on soil quality</td>
</tr>
<tr>
<td>2</td>
<td>Monday</td>
<td>Case 1 (Soil physics)</td>
<td>Friday Jan 15</td>
<td>Group work</td>
</tr>
<tr>
<td></td>
<td>Jan 11</td>
<td>3-4 pm: Lecture Maja – Physical attributes of soil quality</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-5 pm: Group work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Monday</td>
<td>Case 1 (Soil physics)</td>
<td>Friday Jan 22</td>
<td>Group work</td>
</tr>
<tr>
<td></td>
<td>Jan 18</td>
<td>3-4 pm: Lecture Sandra: Soil erosion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4-5 pm: Group work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Monday</td>
<td>Case 1 (Soil physics)</td>
<td>Friday Jan 29</td>
<td>Group work to assist groups and individual students to prepare for oral presentations and written reports</td>
</tr>
<tr>
<td></td>
<td>Jan 25</td>
<td>Group work</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Monday</td>
<td>Case 1 (Soil physics)</td>
<td>Friday Feb 5</td>
<td>Lecture Sandra: Can we afford to ignore century of science in soil diagnosis?</td>
</tr>
<tr>
<td></td>
<td>Feb 1</td>
<td>Group presentations and synthesis</td>
<td></td>
<td>Case 2 (Soil chemistry)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Salal Cedar Hemlock Integrated Research Program</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Soil fertility assessment of the UBC Farm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Soil chemical assessment of fabricated mixes at the Vancouver Landfill</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• NEW CASE: Re-grounding in Riley Park</td>
</tr>
<tr>
<td>6</td>
<td>Monday</td>
<td>Family Day – UBC closed</td>
<td>Friday Feb 12</td>
<td>Group work</td>
</tr>
<tr>
<td></td>
<td>Feb 8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reading break - UBC closed</td>
<td>Friday Feb 19</td>
<td>Reading break - UBC closed</td>
</tr>
<tr>
<td>7</td>
<td>Monday</td>
<td>Case 2 (Soil chemistry)</td>
<td>Friday</td>
<td>Group work</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3-4 pm: Lecture Mike Van Ham</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Day</td>
<td>Event Description</td>
<td>Date</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------</td>
<td>---</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Feb 22</td>
<td></td>
<td>Use of biosolids to create constructed soils 4-5 pm: Group work</td>
<td>Feb 26</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Monday</td>
<td>Case 2 (Soil chemistry) 3-4 pm: Lecture Cindy Prescott - Forest nutrition management 4-5 pm: Group work</td>
<td>Friday Mar 4</td>
<td></td>
</tr>
<tr>
<td>Feb 29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Monday</td>
<td>Case 2 (Soil chemistry) Group presentations and synthesis</td>
<td>Friday Mar 11</td>
<td></td>
</tr>
<tr>
<td>Mar 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Monday</td>
<td>Case 2 (Soil biology) Group work</td>
<td>Friday Mar 18</td>
<td></td>
</tr>
<tr>
<td>Mar 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Monday</td>
<td>Case 3 (Soil biology) 3-4 pm: Lecture Shannon Berch - Soil biota & forest productivity 4-5 pm: Group work</td>
<td>Friday Mar 25</td>
<td></td>
</tr>
<tr>
<td>Mar 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Monday</td>
<td>Easter Monday – UBC closed</td>
<td>Friday Apr 1</td>
<td></td>
</tr>
<tr>
<td>Mar 28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Monday</td>
<td>Case 3 (Soil biology) Group presentations</td>
<td>Friday Apr 8</td>
<td></td>
</tr>
<tr>
<td>Apr 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Lecture Sandra: Indicators for soil biological properties and processes

Case 3 (Soil biology):
- Soil fauna at a LTSP site
- Effects of long-term grazing on abundance and diversity of soil mesofauna
- Effects of variable retention harvesting on soil microbial communities in coastal BC forests

Good Friday – UBC closed

Course summary
Judging Criteria for Group Presentations

Group presentations will be judged based on content (6 points), structure (3 points), and delivery (1 point).

Content:
1. Content was presented in a clear and concise manner.

 a. Explains theory and potentially complex material clearly (e.g., no jargon or jargon is explained).

 b. There was sufficient detail for an out-of-field observer to follow the presentation.

2. Purpose or objective for presentation was clearly articulated.

3. Purpose or objective stated was achieved.

Structure:
1. The presentation started in a manner that captured the audience’s interest and was relevant to the body of the presentation.

2. The points were presented in a logical manner.

3. Closed in a manner that linked to the purpose (e.g., summary of main points, suggestions for future research/directions, thought-provoking comments/questions where do we go from here?).

4. Length (kept to allotted time).

Delivery:
1. The students’ presentation kept the audience’s interest and engaged the interest and participation of the other groups.

2. Audio-visual aides were used in a manner that supported the presentation.

3. Speech: projected well (everyone could hear), presenters did not speak too quickly.

4. Presenters were well organized.

5. Handled questions well (if did not understand question paraphrased back to the questioner, demonstrated critical thinking if answer is not immediately obvious, makes an educated guess, if does not know the answer says so, shows confidence in ability to answer questions).
Case Report-Writing Tips

Case reports will be evaluated based on content and organization (6 points), comparison of your own case to other cases (3 points), and grammar and clarity of the writing style (1 point). Pls submit your term papers as Word (not pdf) files.

Content and organization:

- Provide background information on the study site(s) and management practices (or treatments if your case is done on an experimental field) as well as climate, topography, parent material, and type of vegetation on the study site(s).

- Outline study objective(s).

- Develop a soil quality framework [Function \rightarrow Process \rightarrow Attribute (Property) \rightarrow Indicator] and justify selection of indicators focusing on the management practices of your case study.

- Discuss the data of your case study.

- Before you start writing the report, make an outline and identify the key sub-sections.

- During the writing process, refer frequently to the learning outcomes to keep yourself on track.

Comparison to other cases:

- In the conclusion, briefly summarize the body of your report and restate your argument. Check it against the study objective(s) to make sure you have not wandered away from it.

- In 1-2 paragraphs, compare and/or relate key findings of your case to the cases presented by other groups.

Grammar and writing style:

- Keep your sentences simple. That does not necessarily mean that your thoughts are simple. Complex and adjective-laden sentences just make your great ideas hard to follow.

- Each paragraph should contain one main idea. Paragraphs should be logically organized. For example, you should discuss ideas in the order in which they appear in your introduction.

- Avoid quotes, they are usually taken out of context. Also, we prefer to see your own writings and interpretations than someone else's.

- As a university student, you are expected to submit original work and give credit to other peoples' ideas; hence, plagiarism will not be tolerated. If you are unclear on the concept, please see http://learningcommons.ubc.ca/get-study-help/academic-integrity/

- We strongly encourage you to refer to:
 a)“The Elements of Style” by Strunk and White (http://www.bartleby.com/141/).

- **Word limit of 1,000 words** does not include tables, figures, list of references, cover page, and appendix (assuming that you decide to include appendix in your paper).

- When preparing, and reviewing your paper before you submit it, make sure that your paper is **correct, clear, concise, consistent, and complete** (co-called 5 Cs of communication).